domingo, 16 de mayo de 2010

Describir modelo OSI

En 1977, la Organización Internacional de Estándares (ISO), integrada por industrias representativas del medio, creó un subcomité para desarrollar estándares de comunicación de datos que promovieran la accesibilidad universal y una interoperabilidad entre productosde diferentes fabricantes.

El resultado de estos esfuerzos es el Modelo de Referencia Interconexión de Sistemas Abiertos (OSI).

El Modelo OSI es un lineamiento funcional para tareas de comunicaciones y, por consiguiente, no especifica un estándar de comunicación para dichas tareas. Sin embargo, muchos estándares y protocolos cumplen con los lineamientos del Modelo OSI.

Como se mencionó anteriormente, OSI nace de la necesidad de uniformizar los elementos que participan en la solución del problema de comunicación entre equipos de cómputo de diferentes fabricantes.

Niveles del Modelo OSI.
Aplicación.

Presentación.

Sesión.

Transporte.

Red.

Enlace de datos.

Físico.



La descripción de los 7 niveles es la siguiente :

Nivel Físico:Define el medio de comunicación utilizado para la transferencia de información, dispone del control de este medio y especifica bits de control, mediante:

Definir conexiones físicas entre computadoras.

Describir el aspecto mecánico de la interface física.

Describir el aspecto eléctrico de la interface física.

Describir el aspecto funcional de la interface física.

Definir la Técnica de Transmisión.

Definir el Tipo de Transmisión.

Definir la Codificación de Línea.

Definir la Velocidad de Transmisión.

Definir el Modo de Operación de la Línea de Datos.

Nivel Enlace de Datos: Este nivel proporciona facilidades para la transmisión de bloques de datos entre dos estaciones de red. Esto es, organiza los 1's y los 0's del Nivel Físico en formatos o grupos lógicos de información. Para:

Detectar errores en el nivel físico.

Establecer esquema de detección de errores para las retransmisiones o reconfiguraciones de la red.

Establecer el método de acceso que la computadora debe seguir para transmitir y recibir mensajes. Realizar la transferencia de datos a través del enlace físico.

Enviar bloques de datos con el control necesario para la sincronía.

En general controla el nivel y es la interfaces con el nivel de red, al comunicarle a este una transmisión libre de errores.

Nivel de Red: Este nivel define el enrutamiento y el envío de paquetes entre redes.

Es responsabilidad de este nivel establecer, mantener y terminar las conexiones.

Este nivel proporciona el enrutamiento de mensajes, determinando si un mensaje en particular deberá enviarse al nivel 4 (Nivel de Transporte) o bien al nivel 2 (Enlace de datos).

Este nivel conmuta, enruta y controla la congestión de los paquetes de información en una sub-red.

Define el estado de los mensajes que se envían a nodos de la red.

Nivel de Transporte: Este nivel actúa como un puente entre los tres niveles inferiores totalmente orientados a las comunicaciones y los tres niveles superiores totalmente orientados a el procesamiento. Además, garantiza una entrega confiable de la información.

Asegura que la llegada de datos del nivel de red encuentra las características de transmisión y calidad de servicio requerido por el nivel 5 (Sesión).

Este nivel define como direccionar la localidad física de los dispositivos de la red.

Asigna una dirección única de transporte a cada usuario.

Define una posible multicanalización. Esto es, puede soportar múltiples conexiones.

Define la manera de habilitar y deshabilitar las conexiones entre los nodos.

Determina el protocolo que garantiza el envío del mensaje.

Establece la transparencia de datos así como la confiabilidad en la transferencia de información entre dos sistemas.

Nivel Sesión: proveer los servicios utilizados para la organización y sincronización del diálogo entre usuarios y el manejo e intercambio de datos.

Establece el inicio y termino de la sesión.

Recuperación de la sesión.

Control del diálogo; establece el orden en que los mensajes deben fluir entre usuarios finales.

Referencia a los dispositivos por nombre y no por dirección.

Permite escribir programas que correrán en cualquier instalación de red.

Nivel Presentación: Traduce el formato y asignan una sintaxis a los datos para su transmisión en la red.

Determina la forma de presentación de los datos sin preocuparse de su significado o semántica.

Establece independencia a los procesos de aplicación considerando las diferencias en la representación de datos.

Proporciona servicios para el nivel de aplicaciones al interpretar el significado de los datos intercambiados.

Opera el intercambio.

Opera la visualización.

Nivel Aplicación: Proporciona servicios al usuario del Modelo OSI.

Proporciona comunicación entre dos procesos de aplicación, tales como: programas de aplicación, aplicaciones de red, etc.

Proporciona aspectos de comunicaciones para aplicaciones especificas entre usuarios de redes: manejo de la red, protocolos de transferencias de archivos (ftp), etc.


Describir las arquitecturas de red

ETHERNET

Ethernet es un estándar de redes de computadoras de área local con acceso al medio por contienda CSMA/CDes Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.

La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.
Hace ya mucho tiempo que Ethernet consiguió situarse como el principal protocolo del nivel de enlace. Ethernet 10Base2 consiguió, ya en la década de los 90s, una gran aceptación en el sector. Hoy por hoy, 10Base2 se considera como una "tecnología de legado" respecto a 100BaseT. Hoy los fabricantes ya han desarrollado adaptadores capaces de trabajar tanto con la tecnología 10baseT como la 100BaseT y esto ayuda a una mejor adaptación y transición.

Las tecnologías Ethernet que existen se diferencian en estos conceptos:

Velocidad de transmisión
- Velocidad a la que transmite la tecnología.
Tipo de cable
- Tecnología del nivel físico que usa la tecnología.
Longitud máxima
- Distancia máxima que puede haber entre dos nodos adyacentes (sin estaciones repetidoras).
Topología
- Determina la forma física de la red. Bus si se usan conectores T (hoy sólo usados con las tecnologías más antiguas) y estrella si se usan hubs (estrella de difusión) o switches (estrella conmutada).

ARCNET

Arquitectura de red de área local desarrollado por Datapoint Corporation que utiliza una técnica de acceso de paso de testigo como el Token Ring. La topología física es en forma de estrella mientras que la tipología lógica es en forma de anillo, utilizando cable coaxial y hubs pasivos (hasta 4 conexiones) o activos.

Velocidad
La velocidad de trasmisión rondaba los sd 2 MBits, aunque al no producirse colisiones el rendimiento era equiparable al de las redes ethernet. Empezaron a entrar en desuso en favor de Ethernet al bajar los precios de éstas. Las velocidades de sus transmisiones son de 2.5 Mbits/s. Soporta longitudes de hasta unos 609 m (2000 pies).

Características
Aunque utilizan topología en bus, suele emplearse un concentrador para distribuir las estaciones de trabajo usando una configuración de estrella.
• El cable que usan suele ser coaxial, aunque el par trenzado es el más conveniente para cubrir distancias cortas.
• Usa el método de paso de testigo, aunque físicamente la red no sea en anillo. En estos casos, a cada máquina se le da un número de orden y se implementa una simulación del anillo, en la que el token utiliza dichos números de orden para guiarse.
• El cable utiliza un conector BNC giratorio.

TOKEN RING

Token Ring es una arquitectura de red desarrollada por IBM en los años 1970 con topología lógica en anillo y técnica de acceso de paso de testigo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.

Características principales
• Utiliza una topología lógica en anillo, aunque por medio de una unidad de acceso de estación múltiple (MSAU), la red puede verse como si fuera una estrella. Tiene topologia física estrella y topología lógica en anillo.
• Utiliza cable especial apantallado, aunque el cableado también puede ser par trenzado.
• La longitud total de la red no puede superar los 366 metros.
• La distancia entre una computadora y el MAU no puede ser mayor que 100 metros.
• A cada MAU se pueden conectar ocho computadoras.
• Estas redes alcanzan una velocidad máxima de transmisión que oscila entre los 4 y los 16 Mbps.
• Posteriormente el High Speed Token Ring (HSTR) elevó la velocidad a 110 Mbps pero la mayoría de redes no la soportan.

Valorar el ambiente fisico

Instalacion electrica

generalmente en una instalación para un red de computadoras se debe hacer con 2 circuitos separados, una para tensión esencial que es donde se va a conectar el cpu y otro circuito de tensión normal donde se va a conectar cualquier cosa como lamparas calculadoras, etc.
cada circuito no debe tener mas de 6 ó 8 bocas para que no tengas problemas con los armónicos y no sobrecargue los circuitos.
cada circuito esencial debe estar protejido con un disyuntor de 25A y una térmica de 16ª

Control de condiciones ambientales

Prevención de inundaciones
Los cuartos de red deben estar libres de cualquier amenaza de inundación. No debe haber tubería de agua pasando por (sobre o alrededor) el cuarto de telecomunicaciones. De haber riesgo de ingreso de agua, se debe proporcionar drenaje de piso. De haber regaderas contra incendio, se debe instalar una canoa para drenar un goteo potencial de las regaderas. Los pisos de los CT deben soportar una carga de 2.4 kPa.

Iluminación
Los cuartos deben de estar bien iluminados, se recomienda que la iluminación debe de estar a un mínimo de 2.6 mts del piso terminado, las paredes y el techo deben de estar pintadas de preferencia de colores claros para obtener una mejor iluminación, también se recomienda tener luces de emergencia por si al foco se daña. Se debe proporcionar un mínimo equivalente a 540 lux medidos a un metro del piso terminado.

Localización
Con el propósito de mantener la distancia horizontal de cable promedio en 46 metros o menos (con un máximo de 90 metros), se recomienda localizar el cuarto de telecomunicaciones lo más cerca posible del centro del área a servir. Debe haber tomacorrientes suficientes para alimentar los dispositivos a instalarse en los andenes. El estándar establece que debe haber un mínimo de dos tomacorrientes dobles de 110V C.A. dedicados de tres hilos. Deben ser circuitos separados de 15 a 20 amperios. Estos dos tomacorrientes podrían estar dispuestos a 1.8 metros de distancia uno de otro. Considerar alimentación eléctrica de emergencia con activación automática. En muchos casos es deseable instalar un pánel de control eléctrico dedicado al cuarto de telecomunicaciones.

La alimentación específica de los dispositivos electrónicos se podrá hacer con UPS y regletas montadas en los andenes. Separado de estos tomas deben haber tomacorrientes dobles para herramientas, equipo de prueba etc. Estos tomacorrientes deben estar a 15 cms. del nivel del piso y dispuestos en intervalos de 1.8 metros alrededor del perímetro de las paredes. El cuarto de rede debe contar con una barra de puesta a tierra que a su vez debe estar conectada mediante un cable de mínimo 6 AWG con aislamiento verde al sistema de puesta a tierra de telecomunicaciones según las especificaciones de ANSI/TIA/EIA-607.

Normas de seguridad


La conexión de un ordenador a la Red de Telecomunicaciones conlleva ciertos riesgos desde el momento en que dicha red está conectada a Internet. Desde Internet llegan diariamente ataques, virus, gusanos, etc. y para minimizar los riesgos los usuarios deben cumplir las siguientes
normas de seguridad:
• Todos los usuarios responsables del uso de un ordenador deben garantizar que está protegido por una contraseña suficientemente robusta, es decir, no trivial o evidente.
• Deben aplicarse periódicamente todas las actualizaciones de seguridad para el sistema operativo que este usando. Esta tarea es fácilmente automatizable en la mayoría de los casos.
• Los sistemas operativos deben de estar protegidos mediante antivirus eficaces.
• No están permitidos las conexiones externas vía modem o cualquier otro sistema que no pase por los filtros establecidos por la Red de Telecomunicaciones.
Además de las anteriores normas, se recomienda:
• Instalar sólo el software que sea necesario.
• En la medida de lo posible sustituir los protocolos que no encriptan las contraseñas por otros que si las encripten.
• No instalar servicios de red que no se vayan a usar.

Sistema de cableado estructurado

Es el sistema colectivo de cables, canalizaciones, conectores, etiquetas, espacios y demás dispositivos que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus. Las características e instalación de estos elementos se debe hacer en cumplimiento de estándares para que califiquen como cableado estructurado. El apego de las instalaciones de cableado estructurado a estándares trae consigo los beneficios de independencia de proveedor y protocolo (infraestructura genérica), flexibilidad de instalación, capacidad de crecimiento y facilidad de administración.
El cableado estructurado consiste en el tendido de cables en el interior de un edificio con el propósito de implantar una red de área local. Suele tratarse de cable de par trenzado de cobre, para redes de tipo IEEE 802.3. No obstante, también puede tratarse de fibra óptica o cable coaxial.

Ventajas

En la actualidad, numerosas empresas poseen una infraestructura de voz y datos principalmente, disgregada, según las diferentes aplicaciones y entornos y dependiendo de las modificaciones y ampliaciones que se ido realizando. Por ello es posible que coexistan multitud de hilos, cada uno para su aplicación, y algunos en desuso después de las reformas. Esto pone a los responsables de mantenimiento en serios apuros cada vez que se quiere ampliar las líneas o es necesario su reparación o revisión.
Todo ello se puede resumir en los siguientes puntos:

• • Convivencia de cable de varios tipos diferentes, telefónico, coaxial, pares apantallados, pares si apantallar con diferente número de conductores, etc.
• • Deficiente o nulo etiquetado del cable, lo que impide su uso para una nueva función incluso dentro del mismo sistema.
• • Imposibilidad de aprovechar el mismo tipo de cable para equipos diferentes.
• • Peligro de interferencias, averías y daños personales, al convivir en muchos casos los cables de transmisión con los de suministro eléctrico.
• • Coexistencia de diferentes tipos de conectores.
• • Trazados diversos de los cables a través del edificio. Según el tipo de conexión hay fabricantes que eligen la estrella, otros el bus, el anillo o diferentes combinaciones de estas topologías.
• • Posibilidad de accidentes. En diversos casos la acumulación de cables en el falso techo ha provocado su derrumbamiento.
• • Recableado por cada traslado de un terminal, con el subsiguiente coste de materiales y sobre todo de mano de obra.
• • Nuevo recableado al efectuar un cambio de equipo informático o telefónico.
• • Saturación de conducciones.
• • Dificultades en el mantenimiento en trazados y accesibilidad de los mismos.

Ante esta problemática parece imposible encontrar una solución que satisfaga los requerimientos técnicos de los fabricantes y las necesidades actuales y futuras de los mismos.

Sin embargo entran en juego varios factores que permiten modificar este panorama:

• • Tendencia a la estandarización de Interfases por parte de gran número de fabricantes.
• • Estándares internacionalmente reconocidos para RDSI (Red Digital de Servicios Integrados).
• • Evolución de grandes sistemas informáticos hacia sistemas distribuidos y redes locales.
• • Generalización del PC o compatible en el puesto de trabajo como terminal conectado a una red.
• • Tecnologías de fabricación de cables de cobre de alta calidad que permite mayores velocidades y distancias.
• • Aparición de la fibra óptica y progresivo abaratamiento del coste de la electrónica asociada.
• • Además de todo ello algunas compañías han tenido la iniciativa de racionalizar dichos sistemas, así como dar soluciones comunes.

Aplicaciones

Las técnicas de cableado estructurado se aplican en:

• • Edificios donde la densidad de puestos informáticos y teléfonos es muy alta: oficinas, centros de enseñanza, tiendas, etc.
• • Donde se necesite gran calidad de conexionado así como una rápida y efectiva gestión de la red: Hospitales, Fábricas automatizadas, Centros Oficiales, edificios alquilados por plantas, aeropuertos, terminales y estaciones de autobuses, etc.
• • Donde a las instalaciones se les exija fiabilidad debido a condiciones extremas: barcos, aviones, estructuras móviles, fábricas que exijan mayor seguridad ante agentes externos.